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Deep reinforcement learning (DRL) is a promising approach for adaptive robot

control, but its current application to robotics is currently hindered by high sample We use a simulated 7-DOF Fetch Robotics arm trained with DDPG on the pushing, sliding, and
requirements. We propose two novel data augmentation techniques for DRL In pick-and-place tasks from OpenAl Gym, to perform our experimental evaluation and
order to reuse more efficiently observed data. The first one called Kaleidoscope demonstrate the effectiveness of our propositions and answer those questions:
Experience Replay exploits reflectional symmetries, while the second called Goal-
augmented Experience Replay takes advantage of lax goal definitions. Our » How does ITER perform compared to HER on single and multi-goal tasks ?
preliminary experimental results show a large increase in learning speed. e How much KER contributes to the performance of ITER?
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As a general approach to increase data efficiency in DRL, one can leverage the 0.0 0.0 0.0
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symmetries of valid trajectories for data augmentation. As an illustration, we Epoch Number (every epoch = 100 episodes = 100x50 timesteps)

propolse ITER (Invarlant Transfor.m EXDerlen.CG R_epla‘V)_’ an arChIteCture that Fig. 4. Comparison of vanilla HER and ITER with 8KER symmetries and 4GER applications on multi-goal tasks
combines our two proposed techniques (explained in details below): | b
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« Kaleidoscope experience replay (KER) is based on decomposable 1.0 1.0 1.0

symmetries of valid transitions set. - - | -
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« Goal-Augmented Experience Replay (GER) is based on reward-preserving % 9.0 e ,w ‘f‘ ” il o
decomposable symmetries, but can be applied to all feasible trajectories in §0,4 0.4 1) | 0.4
the same fashion as HER. 2 ‘ ~
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KER uses reflectional symmetry (Though more

_ _ _ _ Fig. 5. Comparison of vanilla HER and ITER with 8KER symmetries and 4GER applications on single-goal tasks.
general Invariant transformations, e.g., rotation,

translation, could also be wused In place of —— vanilla HER 1KER 2KER — 4KER — BKER —— 16KER
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reflectional symmetry.). Consider a 3D workspace R
with a bisecting plane xoz as shown in Fig. 2. If a
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feasible trajectory is generated in the workspace JO° ‘\. |
(red In Fig.3), natural symmetry would then yield a %0.6 V'M os| | , iy
- new feasible trajectory reflected on this plane. More 2 | |
| generally, the xoz plane may be rotated by some 50.4 | / —
angle 6 along axis z and still define an invariant |
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symmetry for the robotic task.

Fig. 2. Symmetric Plane of KER 054 7
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Fig. 6. Comparison of different KER parameters with a single GER on multi-goal tasks.
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Fig. 3. The bottom figure illustrates this with $Sxoz$ rotated twice to obtain the orange % " |
and green planes. The three symmetries are then applied to the red trajectory to obtain OUC’ 0.6 0.6
\ five new ones. / 0 ‘:""
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Goal-Augmented Experience Replay 0.2 0.2
GER exploits the formulation of any reward function 0050 100 150 200°%% 50 100 150 200°% 50 100 150 200
| ) i Epoch Number (every epoch = 100 episodes = 100x50 timesteps)
that defines a successful trajectory as one whose | | . | .
0157 . ] o ] Fig. 7. Comparison of different GER parameters without KER on multi-goal tasks.
end position is within a small radial threshold (a > <
: ball) centered around the goal. When the robot Conclusion
obtains a valid trajectory, we therefore know that it . . .
. J . Y We proposed two novel data augmentation techniques KER and GER to amplify the
can In fact be considered successful for any goal . . . . .
L . S efficiency of observed samples in a memory replay mechanism. KER exploited reflectional
within a ball centered around its each position. . . . . .
. . symmetry in the valid workspace (though in general it could be employed with other types
Based on this observation, GER augments , . . . .
o ey . . . . of symmetries). GER, as an extension of HER, is specific to goal-oriented tasks where
| | successful trajectories by replacing the original goal . . . . —
Fig. 4. Generated Goals in Orange . L success is defined in terms of a thresholded distance. The combination of these
Color with a random goal sampled within that ball. . . . .
techniques greatly accelerated learning as demonstrated in our experiments.
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