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Sensory integration with articulated motion on
a humanoid robot

doi:10.1533/abbi.2004.0057

J. Rojas and R. A. Peters II
Center for Intelligent Systems, Vanderbilt University, Nashville TN, USA

Abstract: This paper describes the integration of articulated motion with auditory and visual sensory
information that enables a humanoid robot to achieve certain reflex actions that mimic those of people.
Reflexes such as reach-and-grasp behavior enables the robot to learn, through experience, its own state
and that of the world. A humanoid robot with binaural audio input, stereo vision, and pneumatic
arms and hands exhibited tightly coupled sensory-motor behaviors in four different demonstrations.
The complexity of successive demonstrations was increased to show that the reflexive sensory-motor
behaviors combine to perform increasingly complex tasks. The humanoid robot executed these tasks
effectively and established the groundwork for the further development of hardware and software
systems, sensory-motor vector-space representations, and coupling with higher-level cognition.

Key words: Humanoid robotics, robot control, sensory-motor coordination.

INTRODUCTION

Through sensing coupled with motion, people interact
with, and learn about, their environments. Such interac-
tions are developmental as well as purposeful. Infants, for
example, manipulate objects and analyze them sensually,
using vision for shape, color, pattern, texture, touch for
temperature, shape, texture, smell for aromatic informa-
tion, and taste for flavor (Kawamura et al 1995). Manipu-
lation structures the sensory information. Since the laws of
physics are constant, similar actions on similar objects yield
similar results consistently. Over time, the integration of
multimodal sensory information with motion grounds the
infant in reality and provides a basis for understanding the
world and his or her effects on it.

Robots, likewise, can learn to interact with the world
through sensing and motion. Pfeifer has shown that
sensory-motor state data can self-organize into vector space
structures that, in effect, categorize the world in terms of
the robot’s sensory motor coordination (SMC) (Pack et al
1997). Thus, the development of SMC grounds the robot
and provides a foundation for it to interact purposefully
with people and its environment.

The goal of our research is to create humanoid robots
that can interact autonomously and socially within a human
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structured environment. This paper presents the results of
combining sensory-motor reflexes that map auditory and
visual input to camera-head motions and reach-and-grasp
behaviors.

RESEARCH TEST BED

Researchers at Vanderbilt University have built a hu-
manoid robot, intelligent soft arm control (ISAC), and
a parallel distributed software system, intelligent machine
architecture (IMA), to perform research on the acquisition
of intelligent behaviors.

ISAC robot

ISAC is a stationary humanoid robot. It is an anthro-
pomorphic upper torso equipped with a color stereo
vision system, two independent pan-tilt units, two micro-
phones, an infrared sensor array, two pneumatic arms and
hands, speech output, and speech recognition capabilities
(Figure 1). The robot was originally created to assist hand-
icapped people while ensuring their security (Kawamura
et al 2005, Kawamura et al 2004).

Intelligent machine architecture

The intelligent machine architecture is an object-oriented
software system that controls the robot through modu-
lar descriptions of its hardware, tasks, and environment
(Mataric 1992, Northrup et al 2001). The architecture
comprises two levels of abstraction. The higher level is
a multi-agent network defined by agents and relationships.
An agent is a software object that tightly encapsulates a
resource (either physical or computational). A relationship
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Figure 1 The humanoid robot, ISAC.
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Figure 2 IMA architecture.

is a software object that connects two or more agents.
The lower level implements agents and relationships
through component-object software modules that have an
established communication protocol. (These are based
on Microsoft DCOM, the distributed component object
model service of Windows NT/2000.) Thus, IMA is a
network of parallel, concurrent software modules formed
from simpler, reusable component objects.

IMA describes ISAC with respect to sets of resources:

• Physical: head, arms, and hands.
• Skill: sonic localization, visual tracking, reaching, and

grasping.
• Task: detecting audio cues, finding objects, and sensing

objects.

Each resource is encapsulated as an agent and is con-
nected dynamically to other agents by relationships. Agents
can be created from component-objects or other agents by
combining reusable subcomponents and their parameters
(see Figure 3).

IMA facilitates coarse-grained parallel processing be-
cause of the loose coupling afforded by message passing
and because DCOM allows software objects on separate
computers to be treated as if they were local to each other.
Each agent acts locally based on its internal state and
provides a set of services to other agents through various
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Figure 3 Geometry of the probability ellipse (Barile 1997).

relationships. The resulting asynchronous parallel opera-
tion of decision-making agents simplifies the system model
at a higher level.

Through encapsulation, IMA maintains robustness of
operation within an evolving system because the network
of agents is isolated from internal changes in any one of the
agents. Essentially, the high level model provides a shell
around the implementation level. This allows a program-
mer to experiment with intra-agent algorithms without
changing the overall structure of the system. Additionally,
component mechanisms can be defined at both run-time
and design-time allowing for a dynamic configuration.

SENSORS

Vision and audio were used as the main sensory modalities
for ISAC. Two Sony XC999 digital color cameras and two
high fidelity microphones were used. Audio signals were
used to direct the robot’s attention and visual information
was used to locate and track an object of interest.

Vision

ISAC’s vision system was designed to be simple and
efficient. Color and motion segmentation were used to
extract information from the environment.
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Sensory integration with articulated motion on a humanoid robot

The color segmentation algorithm uses color
histograms. There is a separate histogram for each ob-
ject that the robot can identify. A histogram is specified
by a probability ellipse in hue-saturation (HS) space. The
latter were extracted from images of the object through
statistical analysis. Histograms enable real-time compar-
isons with visual input to detect objects of interest (Barile
1997). Parameters µx, µy, σ x, σ y, and ρ are used to find
the probability ellipse with an inner uniform distribution
inside (Figure 2). The equation for the ellipse is:

1
(1 − ρ2)

[
(x − µx)2

σ 2
x

− (x − µx)(y − µy)
σxσy

+ (y − µy)2

σ 2
y

]
= λ2 (1)

where the center of the ellipse is at (µx, µy). Parameter λ

is the standard deviation of the data inside the ellipse and
ρ is a correlation coefficient. The angle of rotation of the
ellipse about the center θ is defined by:

θ = tan−1
[

1
2ρσxσy

(
σ 2

y − σ 2
x

±
√

(2ρσxσy)2 + (
σ 2

y − σ 2
x

)2
)]

(2)

The color of interest is modeled through this statistical
procedure in the 2-D HS color space. Pixel classifica-
tion techniques check to see if a pixel value falls within
the ellipse’s boundary given some value for the standard
deviation, λ. Each pixel in the image whose HS value falls
within the ellipse, α < 1, is marked as a foreground pixel,
which is part of the target.

α = 1
λ2(1 − ρ2)

[
(x − µx)2

σ 2
x

− (x − µx)(y − µy)
σxσy

+ (y − µy)2

σ 2
y

]
(3)

A morphological opening—an erosion followed by a
dilation with a 3 × 3 pixel cross—is done to eliminate
small regions.

Motion segmentation is based on a pixel-wise difference
threshold of successive frames. If the result at a pixel is
greater than the threshold, then the pixel is marked as part
of a moving object. Blurring and down-sampling are used
to reduce image noise. The center of mass of the marked
pixels is taken as the image location of the moving object:

x̄ = 1
N

N∑
i=1

Fxi and ȳ = 1
N

N∑
i=1

Fyi (4)

where N is the total number of foreground pixels, Fx and
Fy represent the number of segmented pixels across the
rows and columns of an image. The method assumes that
only one object is being analyzed at a time. If more than

one object is segmented, the focus of attention (FOA) will
be somewhere between the objects.

Audio

A stereo pair of microphones is used for audio cueing of
the camera head through sonic localization. The algorithm
is based on a cross-channel ratio of sound energy between
the right and the left audio channels. A sound intensity
envelope is detected in both channels and passed through
a low-pass digital Butterworth filter. The squared value
of each signal at each instant is computed and used as a
measure of energy:

Rn = ĒLn

ĒRn
(5)

To determine the detection ratio, a sound source was
measured at 11 different pan angle locations. The values
of the ratios at each location were computed and were used
as references to estimate the direction of the source of a
sound. These values can be calibrated easily at any time to
adjust the system for different ambient noise conditions.
Upon the detection of a sound that exceeds a threshold
in both channels, the ratio of channels energy and one of
the 11 angular intervals is selected as the direction of the
sound. The detected angle is made available to other agents
in the system.

MOTION

When a robot possesses knowledge about its environment,
behavioral responses can take place. When the appropriate
image processing techniques have taken place, a spatial
location is computed using a neural net and passed to the
pan-tilt unit. When the pan-tilt unit fixates on the desired
object a Cartesian location in space is derived and used to
reach towards the target and grab it.

Eyes

A pair of high-speed, accurate positioning pan-tilt units
was used to move the cameras. The pan and tilt angles and
the velocity and acceleration in each camera are indepen-
dently controlled.

Eye movements

The brain’s oculomotor system uses three different types
of eye motions to keep an object of interest in the fovea
(Bear and Connors 1996, Srikaew 2000). In ISAC, saccades
and smooth pursuits are the main type of eye movements
(Scassellati 2001).

ISAC’s saccade function uses two modules: a map
trainer and a command generator. The map trainer
provides an adequate transformation for the command gen-
erator to issue accurate commands to the pan-tilt unit. A
neural net was used to map image coordinates to motor
coordinates because it is fast and accurate, and no camera
calibration is needed.
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Figure 4 Feed-forward neural net (Scassellati 2001).

The training is done off-line by using a back-
propagation learning algorithm. Each pan-tilt unit is
trained individually. The inputs to the neural net are the
�x and �y position of the gazed target, whilst the output
nodes are those corresponding to the pan and tilt motions,
respectively. A hidden middle layer contains 25 units that
are mapped through a bipolar hyperbolic tangent sigmoid
function. The diagram of neural net is shown in Figure 4.
The command generator uses the map to produce motor
steps corresponding to target-position inputs, which are
sent to the camera head controller. Post-saccade process-
ing is used to correct the neural weights to minimize the
error of the transformation.

A smooth pursuit keeps a target in the fovea continu-
ally using target position and target velocity. The latter
is used to predict the future position of the camera and
allow for a smoother trajectory. Two concentric regions of
different radii are defined as: the fovea with a radius of F
pixels, and the dead zone with a radius of D pixels, where,
F > D. Smooth pursuit, also known as proportional track-
ing, occurs when the target is located outside the dead zone
but inside the fovea. If the target exits the fovea, a saccade
is issued to reach the target. The positional vector is the
distance of the target from the center of the fovea and is
defined as:

�p = (px, py) = (�x, �y), | �p| =
√

�x2 + �y2

(6)

Similarly, velocity is described as:

�v = (vx, vy), |�v| =
√

v2
x + v2

y (7)

where the units are in pixels per time unit. It follows that
the motor commands, mPL, mPR, mTL, and mTL, can be
calculated by making use of the distance of the target and
constant gains, kPL, kPR, kTL, and kTL, for the left pan,
right pan, left tilt and right tilt motors:

m PL,R = κPL,R · �xL,R, m TL,R = κTL,R · �xT,R,

(8)

where the L and R subscripts describe the left and right
images, respectively. To predict target position, let �t be
the time interval between consecutive image frames, let �v
be the velocity of the target at time t, so the position of the

target at the next frame, t + �t, will be:

�xt+�t = xt + vx · �t, �yt+�t = yt + vy · �t

(9)

This produces a smooth motion in the camera head when
it tracks a specific target.

The camera head controller is an open loop. Given that
object trajectories vary dynamically in the environment,
the trajectory cannot be precisely estimated. Overshoots of
the controller may occur. To reduce this effect, (�xt, �yt)
is low-pass filtered over t.

System integration

The visual system combines all the modules previously
mentioned. The images provided by the cameras are
captured by an agent that encapsulates all the frame
grabber functionalities. Then, the objects are extracted
from the images via color or motion segmentation. The
center of mass is calculated and used by the saccade module
to fixate on the target position. A velocity signal is also
calculated and used by the smooth pursuit module. Both
eye movements experience a slight delay that accounts for
the movement of the camera. Yet, data streams are passed
as quickly as possible to keep the camera head on target.
Saccades and smooth pursuits behave similarly to each
other, see Figure 5.

Pneumatic arms

The humanoid robot, ISAC, is actuated by pneumatic
“McKibben artificial muscles”. These are made from
an inflatable, tubular inner bladder sheathed with a
nylon double helix weave that shortens lengthwise when
expanded radially (Kawamura et al 1996). Those two main
components are clamped with fittings at both ends, one
of which contains an air intake. The nylon sheath holds
constantly the volume of the gas within the rubber tube.

Therefore, as they are inflated, the actuators contract
along the axis of the tube. Similarly, as they deflate they
expand along the axis. If one end is fixed, the other will
move a load in an approximately linear trajectory (Daerden
and Lefeber 2002). The arms exhibit compliance since the
pneumatic actuators operate on the basis of gas compress-
ibility, and their inner bladders are elastic. Even if the gas
pressure remains unchanged, an applied force that changes
the length of the actuator produces a spring-like behavior
in the rubber material of the bladder. This enhances the
compliance of the actuator beyond the compressibility of
the gas. Because of their constituent materials, McKibben
air muscles are lightweight and have a characteristically
high force to weight ratio (Pfeifer and Scheier 1997).

To move the end-effector to a specific position, inverse
kinematics computes joint-space angles that are converted
to physical angles, which are used to compute an output
pressure. A sampler drives the pneumatic servo valves that
control the pressure in the artificial muscles (see Figure 6).
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Sensory integration with articulated motion on a humanoid robot
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Figure 6 Arm control loop (Alford et al 1999).

In order to improve the arm control, a biologically
inspired controller was created by Northrup (2001). A
rigorous study of EMG signals in the human arm was
done in order to develop the paradigm. ISAC’s arms are
modeled like those of humans with agonist–antagonist
muscles. In studying quick arm motions, Flanders (1996)
observed that the arm experiences different forces in
horizontal and vertical movements (Flanders et al 1996).
For horizontal motions, triphasic activation occurs. For
vertical motions, triphasic activation is superimposed
with tonic activation (the activation levels needed for
quasi-static postural control). ISAC’s arms were modeled
after that tonic-plus-phasic control paradigm.

Reaching motions may employ a variety of sensory
modalities for motor control–visual and proprioceptive
feedbacks are used by ISAC. However, if a fast motion
directed toward a target is required, there is not enough

time for visual or proprioceptive feedback loops to be
effective. A feed forward control technique was chosen
to overcome this problem. Northrup referenced the error
efferent signals after the feedback could occur (Matarić
1992). The controller compared the actual motion with
the programmed one and if the difference exceeded
an empirically calculated threshold, a feedback error
controller would adjust the motion. A block diagram
of the Northrup’s controller is shown in Figure 7. In
it Xstart, Xgoal, are the initial and final goal positions,
Reaching time is the duration of the movement, and Load
size is the weight of the grasped object. For a given set
of parameters, a motor program is known and is sent to
the artificial muscles as a time sequence of the sum of the
phasic and tonic activation levels. Also, after 100 ms the
feedback loop was activated. Although this approach was
proven to be effective for a 2-D motion control, it was not
adapted as a standard arm controller for ISAC.

Hand

The hand is an in-house hybrid design that consists of a
thumb and a forefinger driven by an electric motor and
pneumatically actuated distal fingers (Christopher 1998).
A PC controller card specifies the desired pressure on gas
valves that either open or close the hand. The hand has
proximity sensors to aid in grasping. They are photoelectric
sensors located on the palm of the robot hand. One fires
when an object is within 10 cm and the other fires when
an object is within 1 cm. Thus, the former warns of the
approach of an object and the latter responds when the
fingers can close on the object.
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Figure 7 Block diagram of tonic-plus-phasic PlusFeedback controller (Matarić 1992).

SENSORY MOTOR CONTROL

Sensory motor coordination is the basis for purposeful
action within a dynamic, loosely structured environment
(Cambron and Peters 2000). It is feedback loop through
which an animal changes the environment by acting on
it, and senses the changes. This close coupling of sensory
signals and motor activity can be described in terms of a
sense-act paradigm. SMC is necessary for a robot that op-
erates in a loosely structured environment. In ISAC, each
sensor is modeled as an independent agent; other agents
couple these to motor controllers to create reflex actions
or basic behaviors (Maes and Brooks 1990). Complex tasks
can be performed through a composition or superposition
of behaviors.

There is evidence to suggest that SMC serves as a
foundation for higher-level learning. In (Pack et al 1997),
Pfeifer reported that sensory data and concurrent motor
control information recorded as a vector time-series
formed clusters in a sensory-motor state-space. He noted
that the state-space locus of a cluster corresponded to a
class of motor action taken under specific sensory condi-
tions. In effect, the clusters described a categorization of
the environment with respect to SMC.

An exemplar of an SMC cluster corresponds at
once to a basic behavior as defined by Brooks (1986)
and to a competency module in a spreading activation
network (Klute and Hannaford 1998). The latter is a
specific example of a more general class of topological,
action-map representations of an environment (Lamb
et al 2002), which can be controlled by discrete-event
dynamical systems (DEDS) (Huber and Grupen 1996)
with transition probabilities given by Markov decision
processes. If the state-space is parameterized by time, the
clusters are collections of trajectories and an exemplar is
a single representative trajectory through the space.

Thus, if a robot is controlled through an environment
to complete a task while recording its SMC vector time-
series, the result is a state-space trajectory that is smooth
during the execution of a behavior but that exhibits a corner
or a jump during a change in behavior (an SMC event).
From this, a DEDS description of the task can be formed as
a sequence of basic behaviors and the transitions between

them. The task is learned in terms of the robot’s own
sensors, actuators, and morphology.

Thus, the basic information obtained from the
environment can be used to deliberate based on some
goal a sequence of tasks to execute. As demonstrated in
(Campbell 2003), robots can learn from their own expe-
rience by constructing models of the dynamics of its own
SMC data. Through teleoperation a set of trajectories that
cover the extreme points of the robot’s workspace were
learned. Then the task could be executed autonomously
by the robot under differing conditions.

With this research in mind, the humanoid robot, ISAC,
was given a set of basic behaviors. These enabled ISAC to
emulate human reactions to sensory information. From this
two results could be achieved: to react to the environment
in a human-like fashion, and through experience perform
autonomous behaviors. A description of the demonstra-
tions implemented for ISAC now follows.

AGENTS

The IMA architecture allows for the implementation of
multiple agents. Each agent’s functionality is a result of
the interactions of their multiple subcomponents. A total
of six agents were used: the Sound Agent, the Camera
Agent, the Head Agent, the Hand Agent, the Arm Agent
and the Trajectory Agent.

The Sound Agent was used to find the direction of a
sound source near the robot. To be detected the sound had
to exceed a predetermined threshold value. This was done
to ignore ambient noise. The pan angle to the sound source
was computed in the horizontal plane so that the camera
head could respond directly. The angles were quantized in
intervals of 15◦ with an origin at the perpendicular bisector
of the camera head baseline.

A Camera Agent captured images at a rate of about
10 Hz. There was one agent for each camera in the pair.
Depending on the task at hand, a color or a motion
segmentation algorithm was selected. Each new image
was segmented per the algorithm, the center of mass was
calculated to be used as the FOA and was made available to
other agents. The Head Agent, which serves as the “brain”
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Sensory integration with articulated motion on a humanoid robot

of the sensory-motor demonstrations, read the FOA from
both Camera Agents through a proxy connection, which
was used to trigger a saccade or smooth pursuit behavior.
Subsequent to the motion, the pan and tilt angles of the
PT units where then used to calculate the 3-D Cartesian
position (with respect to ISAC’s base frame) of the fixated
object.

The Hand Agent could produce two different grasp
mechanisms: a fast grasp and a slower but more precise
grasp. The former did not use the motored fingers, whereas
the latter did. The choice of grasp is selectable and can be
registered in the finite state machine (a simple DEDS) that
controlled the grasp. The hand’s proximity sensors were
used to prevent false (empty) grasps.

The Arm Agent computed the kinematics that articu-
lated the appropriate motion in the arm. Goal locations
could be passed to the arm in two forms: as Cartesian
coordinates or joint-space angles.

The Trajectory Agent generated the Cartesian paths for
the end-effector and periodically updated the Arm Agent.
Motions were computed from the given starting and end-
ing locations (intermediate points for specific routing could
be used as well), the duration of the trajectory, and the pa-
rameter type (either joint angles or Cartesian coordinates).
The starting point used was the arm’s home position and
the ending point was a Cartesian provided by the Head
Agent.

The appropriate connection of these six autonomous
agents gave the robot a variety of reflex-actions.

DEMONSTRATIONS

Four demonstrations were implemented to elicit various
behaviors from ISAC. The demonstrations began with a
low degree of complexity and increased with each con-
secutive routine. The goal of the demonstrations was to
produce basic behaviors by achieving sensory fusion and
articulating basic motion in the robot.

The first demonstration displayed a relationship
between sonic cues and attention by using the Head
Agent and the Sound Agent. The Sound Agent output the
angle of localized sound cues to the Head Agent. The lat-
ter generated a pan motion towards the given locations.
The demonstration successfully emulated audio cueing,
the animal behavior of attending to a distinct noise in the
environment.

The second and third demonstrations were built on the
first one but used simple visual object recognition. In one
demonstration, objects were recognized by color and in
the other, by motion. Once a sonic cue was detected and
attended to by the system, an event was triggered to activate
the segmentation algorithm. The center of mass of the
object was calculated and used by the head controller to
fixate on the object and to track it if the object moved from
the fixation point.

The final demonstration increased the complexity by
performing a reach-and-grasp behavior after the object had

been detected and attended to. The Head Agent computed
a Cartesian location in space for the object of interest.
This location was then used as the goal position for the
arm. The Trajectory Agent created a motion path from
the current position of the arm to the goal position. Once
the reach motion was completed, the proximity sensors
in the hand checked for the presence of the object, if
detected, the grasp was executed. Single reach-and-grasp
behaviors were successfully achieved for selected objects.
Additionally, multiple reach-and-grasp reflex actions were
achieved by updating the robot’s goal and issuing a desired
number of grab commands.

Limitations

The demonstrations were inherently limited by their
reactive nature. The behavior sequences exhibited by
ISAC were strict responses to sensory input. Currently,
the system lacks integration with higher-level commands,
thus ISAC can only perform instinctive but not deliberate
actions. For example, it cannot deliberately shift gaze to
another relevant area in the visual field, nor can it decide
if it should inhibit a reach-and-grasp motion if it were not
appropriate.

Also, integration and cooperation between auditory
and visual information has not been established beyond
audio cueing. The humanoid cannot simultaneously use in-
formation from both inputs to visualize the environment;
rather, its sensory input stream is sequential. Auditory
inputs trigger visual inputs, which in turn trigger motion
in the arm.

CONCLUSION AND FUTURE WORK

The humanoid robot, ISAC, successfully used sensory
data environment to articulate motion reflexively. It
reliably detected the presence of people and objects in the
world and displayed sensory-coupled reactions that grossly
approximate those of a human baby. In the presence of
audio cues in the environment, the robot was able to pan
its cameras toward them to search objects of interest. This
sets up ISAC to be in a situation where it can learn more
about an adjacent person’s intentions. When the robot was
directed to recognize specific objects (with characteristic
colors) the humanoid effectively panned, fixated, and
tracked them. This step allows ISAC to analyze potential
salient features of the object of interest. Finally, vision
enabled simple reach-grasp behaviors to occur. Through
reaching and grasping, the robot has gained the ability
to fetch objects and do further analysis. These reflex
actions, therefore, have set the stage for further research in
robot–environment interaction and learning, and perhaps,
more meaningful human–machine interactions.

Much progress is pending in software and hardware
systems, in sensory-motor associations, and in cognitive
control (Kawamura et al 2005). A more functional and
precise sound acquisition and analysis system would be
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helpful, as would speech output and speech recognition.
Much work remains to be done on the vision system
to increase its functionality for better integration with
articulated motion, so that more sophisticated experiments
in SMC can be performed. Similarly, a more sensitive
hand and arm with better control mechanisms are needed.
Adaptive control is also being implemented.

Finally, the additions of attention and higher level com-
mands guided by decision-making systems would push the
robot to a state where cognition and intelligent behavior can
be explored and developed. Efforts to produce cognitive
behaviors are being pursued in other labs (Flanders et al
1996, Rojas 2004). This area of study promises techno-
logical advancement and exciting breakthroughs that will
drive the effort to develop a cognitive and social humanoid
robot.
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