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Abstract—Autonomous snap assemblies is a highly desirable
robotic functionality. While much work has been done in
active sensing for peg-in-hole assemblies and general compliant
motions, snap assembly state estimation remains an open re-
search problem. This work presents a probabilistic framework
designed to account for uncertainties in assembly and yield
more intuitive and robust outcome assessments. Simulation of
an anthropomorphic robot HIRO performed a cantilever-snap
assembly using the Pivot Approach control strategy and our
snap verification system. The latter used a Bayesian Filter
within its hierarchical taxonomy yielding belief states at two
levels of the taxonomy. The last layer of the system, effectively
assessed the outcomes of all test assemblies. The framework was
effective in correctly assessing the outcome of all test assemblies.

I. INTRODUCTION

Autonomous snap assemblies is a highly desirable func-
tionality for robots. Snap assemblies are challenging due
to their varied and complex configurations and their elastic
components. For the last two decades, the closely related task
of peg-in-hole assembly has benefited from active sensing.
The latter refers to the robot’s ability to reason about its state
and make decisions to efficiently execute a desired task. A
number of methods have been used to estimate the state of
a task: including qualitative reasoning [1], learning contacts
and state transitions [2], and fuzzy logic [3]. More recently,
probabilistic methods have been applied to generate more
robust manipulation behaviors in the presence of uncertainty
[4], [5].

With regard to snap assemblies, the latter can be catego-
rized into three assembly types [6], of which, the cantilever-
snap type can vary in complexity by increasing the snap
number (typically 1, 2, or 4). To date, state estimation
has been implemented for a single-snap cantilever part [7].
However, there are no frameworks that generalize to snaps of
varying complexity to perform state estimation and corrective
motions for snap assemblies (we will refer to Snap Sensing
as an equivalent to active sensing in this domain). Our
focus is to design such a framework for both industrial use
and personal robots. Previously in [6], we developed the
Pivot Approach (PA) control strategy for cantilever-snap type
assemblies (for all abbreviations please refer to Sec. ??). The
PA exploits snap parts’ hardware design to constraint the
task’s motion and generate similar sensory-signal patterns
across trials and systematically discretize the assembly into
intuitive states (see Sec. III). In [8] we designed the Relative-
Change Based Hierarchical Taxonomy (RCBHT) snap ver-

ification system. The latter worked in concert with the PA
and was built on the premise that relative-change patterns
can be classified through a small category set while aided
by contextual information (see Sec. IV). While the RCBHT
yielded promising results, it did not deal with uncertainty
sources such as: noisy force-torque (FT) signals and non-
deterministic predictions by the RCBHT. In this work we
studied whether rendering the RCBHT probabilistic would
yield a more robust, intuitive, and granular representations
for the task’s state.

To this end, a Bayesian Filter (BF) algorithm was designed
and embedded in the system’s taxonomy yielding temporal
belief representations for low-level behaviors (LLB). Further-
more, the higher-level behavior (HLB) layer, computed the
joint probabilities of LLBs that uniquely represent HLB’s
associated with the snap assembly automata states1. The
joint probabilities yielded HLB beliefs for each automata
state. The last layer, the Snap Verification Layer (SVL),
used HLB beliefs across automata states to derive thresholds
to determine test trial’s outcomes. The effectiveness of the
system was tested by simulating the snap assembly of a 4-
snap cantilever camera part through Kawada’s HIRO robot.
Training trials were used to develop probabilistic models for
the BF and derive thresholds for the SVL layer. The prob-
abilistic RCBHT (pRCBHT) yielded intuitive temporal state
representations for both LLBs and HLBs. The BF effectively
replaced sequences of LLBs and HLBs for temporal belief
signals in both layers. The pRCBHT correctly assessed the
outcome of seven test snap assembly trials performed in
simulation indicating the effectiveness of the probabilistic
approach for cantilever snap assemblies.

The paper is organized as follows: Sec. II introduces the
experimental setup. Sec. III describes the Pivot Approach
control strategy. Sec. IV presents the non-probabilistic snap
verification system. Sec. V introduces this work’s contribu-
tion, the Bayesian Filter implementation within the RCBHT.
Sec. VII discusses the significance and limitations of our
work while Sec. VIII summarizes the key aspects of the
paper.

II. EXPERIMENTAL SETUP

In this work the Pivot Approach [6] and the RCBHT
system [8] were applied to a dual-arm 6 DoF anthropo-

1Automata states should not be confused with the task’s state. The former
refers the way in which the snap assembly task is divided, the latter refers to
the behavior enacted by the robot for which the posterior will be computed
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Fig. 1. Experimental Setup - The HIRO robot performs assembles a camera
mold consisting of a female part and a 4-snap male part.

morph HIRO robot that was simulated using the OpenHRP
environment [9] (our original work used a Mitsubishi 7
DoF industrial manipulator). A CAD derived camera part
consisting of both male and female parts was used. The
female part was rigidly held by a specially designed tool
mounted on the robot’s wrist, while the male mold part,
which consisted of four cantilever-snaps (two snaps were
used in our previous work) was rigidly fixed to the ground.
Cantilever-snap assemblies were executed through the PA
and assessed through the pRCBHT. The experimental setup
along with coordinate frames and reference points are shown
in Fig. 1.

III. PIVOT APPROACH

The PA exploits snap parts’ hardware design to constraint
the task’s motion and generate similar sensory-signal patterns
across trials and systematically discretize the assembly into
intuitive states [6].

In our previous work, the PA was applied to a two-snap
male part and decomposed the assembly into five automata
states: Approach, Rotation, Alignment, Snap, and Mating.
The male part consisted of a vertically-offset pivoting dock
from the camera’s top edge wall. This offset affected the
optimality of the entry points between male and female parts
requiring an “Alignment” stage for its completion. In our
current work, a four-snap camera part without offset was
used. Having the pivot at the wall edge allows for an optimal
entry of male and female parts eliminating the need for an
alignment. The assembly used four states to complete the
task as seen in Fig. 3 and used the action transitions seen in
Fig. 2 (see [6] for more details).

A. Controller Templates

In concert with the PA, each automata state is executed by
a controller template. Controller templates were implemented
under the Control Basis Framework [6]. The framework
is designed to flexibly but systematically build and mod-
ify controllers. This framework is useful in environments
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Fig. 3. Each of the four automata states (red) is accompanies by a controller
template (green). Transition conditions are specified in blue.

where change is common. As part of our ongoing work in
automating the snap assembly problem, the framework is
beneficial in allowing us to flexibly implement controllers
for different snap type configurations (cantilever, annular,
and torsional), where each configuration may have varying
degrees of complexity in their geometry, and to implement
such strategies with different robots.

All controller templates, except for Rotation, are the same
as in our previous work. Namely, the Approach, ΦAPR,
Compliant Insertion, πCI , and Mating, πMAT controllers.
Previously, the Rotation controller was a position controller
unable to respond to force disturbances predominant during
this task’s stage. The controller was changed into a com-
pound FT controller πROT with a dominant force controller
ϕfr and a subordinate moment controller ϕmr. The con-
troller’s subordinate update commands are projected into the
nullspace of the dominant controller’s update space to opti-
mize both objectives. The force controller uses two reference
parameters to push the female part down and against the male
part’s wall, while the y-direction reference is set to zero as
no horizontal push is necessary: fref = {10, 0, 0.25}N. As
for ϕmr, its reference parameter applies a torque in the y-
direction mref = {0, 20, 0}Nm. All reference parameters are
applied in world coordinates.

The coordinate frame references used here will affect the
selection of key LLB used in both the RCBHT and the
pRCBHT (Sec. IV and Sec. Sec. VII). The Approach state
transitions to the Rotation state when the x-force exceeds
9N . The Rotation state transitions to the Snap state when the
y-moment exceeds 0.60Nm. Establishing transition thresh-
olds is not trivial and some difficulties will be discussed
in Sec. VII. The reference frames will influence what axis
we focus on to characterize HLBs in the RCBHT. The PA
automata is shown in Fig. 3.

IV. RELATIVE CHANGE-BASED HIERARCHICAL
TAXONOMY

The RCBHT is a state estimation scheme for used in snap
assemblies. Over the last two decades much work has been
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Fig. 2. The Pivot Approach is composed of four states: Approach, Rotation, Snap, and Mating.

done in active sensing for compliant motion tasks; initially
most work was applied to peg-in-hole tasks [2], [1]. Recently,
the concept of contact-state graphs has been used for general
compliant motion tasks for simple geometrical parts as in [4],
[5]. Even with simple geometrical parts, the contact state
number can explode. The approach becomes unfeasible for
geometrically complex parts as is typically the case with snap
contacts.

With this in mind, the RCBHT yields state representa-
tions by hierarchically abstracting snap assembly FT data
to generate intuitive HLBs [8]. The hierarchical taxonomy
is composed of five increasingly abstract layers that encode
relative-change in the task’s force signatures. The taxonomy
is built on the premise that relative-change patterns can be
classified through a small set of categoric labels and aided by
contextual information. The RCBHT analyzes FT signatures
from all force axes independently and contextualizes the state
according to automata state participation (the Approach stage
is not considered as no FT data is gathered there).

The Bayesian Filtering method that will be further de-
scribed in Sec. V is embedded within the RCBHT’s 3rd layer
and renders the verification system probabilistic. The system
uses world coordinates and currently runs off-line, Fig. 4 for
a system overview.
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Fig. 4. The RCBHT abstracts FT sensor data to produce intuitive
higher-level behavior representations that enable reasoning about the snap
assembly’s state.

A. Primitive Layer

The first layer is the primitives layer which partitions the
FT data into linear data segments and classifies those segment
according to its gradient magnitude(for more details see [8]).

Linear regression is used in concert with a correlation mea-
sure to segment the data whenever a minimum correlation
threshold is crossed.

The gradient classification separates data in which a con-
tact or mating event occur. Contact phenomena is character-
ized by sudden and large changes in force signals, almost
approximating an impulse. To this end, positive impulses
(“pimp’s”) and negative ones (“nimp”) were categorized for
gradients (∆force/∆time) with values greater or less than
1000. For mating events, there is little or no change in FT
data, for this reason a constant label was assigned to signals
with gradient less than the (absolute) value of 2. Currently we
use the same gradient thresholds for force and moment axes.
In between these two extremes, three gradient categories:
big, medium, and small for both positive and negative signals
were issued to inform about the relative gradient change. In
total, 9 primitive classifications were derived.

B. Composites

The next layer was designed to extract action or motion
compositions (MCs) by analyzing ordered-pair sequences of
primitives. By studying the patterns in the ordered-pairs,
action-level performance can be understood from the data.
In total, seven basic MCs were derived: increase (↑ force),
decrease (↓ force), constant (const. force), positive contact
(pimp), negative contact (nimp), contact (pimp + nimp) and
unstable motions. Positive gradients regardless of magnitude
were paired as a single group ‘Positive’ gradients while the
same was done with ‘Negative’ gradients.

Table I summarizes motion compositions classification
based on primitive ordered-pairs. The table contains sub-
tables representing five primitive groupings. The first primi-
tive is in bold followed by a listing of possible primitives with
corresponding motion compositions and labels to classify an
MC. An example of the MC layer can be visualized in Fig.
5.

C. Low-Level Behaviors

The taxonomy’s third layer considers MC ordered pairs
along with contextual information such as signal duration
and amplitude values to yield classifications. Eight LLB
classifications were derived and labeled as: push, ‘PS’; pull,
‘PL’; contact, ‘CT’; fixed, ‘FX’; alignment, ‘ALIGN’; shift,
‘SH’; and noise, ‘N’. The LLB formulation criteria is similar
to those at the MC level. That is, for a pair of increase
MCs labels, or decrease MCs labels, or constant MCs labels
or adjust MCs labels; pull, push, fixed, or adjust LLBs are
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assigned respectively. As for times in which the tool contacts
the environment (whether pimp + nimp or vice-versa) a
contact LLB is assigned. One major difference between
the MC level and the LLB level is the introduction of a
shifting behavior ‘SH’. Shifts and alignments are similar but
differ in that, whenever there are two contiguous adjustment
compositions, if the second composite’s amplitude is larger
than the first, label it as ‘SH’ LLB, if smaller label it ‘ALGN’
LLB (see[8] for more details).

D. Refinement

Refinement stages are critical to the system acting as filters
for both the system’s MC and LLB layers. Each refinement
stage cleans up MCs and LLBs generated during the initial
algorithm pass. Each refinement stage analyzes each layer
on the basis of three contexts: a composite’s duration, a
composite’s amplitude value, and repeated composites:
- Time Context Filter: examines two contiguous composites
(except for contacts). If one composite is much larger than
another one, the smaller composite is considered trivial and
is absorbed into the larger composite (see [8] for further
details).
- Amplitude Context: the amplitude context compares two
types of values (average and amplitude values) for contiguous
composites and considers whether the composites can be
merged. Similar average values indicate that both composites
belong to the same region. Similar amplitude values increase
the likelihood of representing the same event. The criteria for
MCs and LLBs is defined below.

For the MCs: (i) ‘i-d’ pairs in either ordered are merged
into adjustments, (ii) ‘i-k’ or ‘d-k’ pairs in either order are
merged as increases or decreases respectively,

For the LLBs: (i) ‘PS-PL’ pairs in either order are merged
into ‘ALIGN,’ (ii) ‘SH-ALIGN’ in either order where the
second composite has a smaller amplitude, are merged as
‘ALIGN,’ and (iii) ‘ALIGN-PS||PL’ or ’SH-PS||PL’ or in
either order are merged as an alignment‘ALIGN.’
- Repeated Context: If two contiguous composites have
repeated labels, they are merged as one, and their data
structures updated accordingly.

The refinement cycle thus finds patterns across composites

that are not evident when primitive or composite ordered-
pairs are initially analyzed. Furthermore, as the refinement
cycles are run at the different abstraction levels, refinements
at higher abstraction levels filter hidden patterns at lower
abstraction levels. The refinement filter was run three times in
each layer to merge most disjoint composites. Fig. 5 already
shows post-refinement results.

E. High-Level Behaviors

The fifth layer contextualizes state reasoning by asking:
“What LLBs principally describe the automata Rotation,
Snap, and Mating states?” The HLB characterizes what
LLB configuration, across all six force axes, define a given
HLB. Currently we only focus on defining the HLBs that
yield an assembly successful (we will later focus on failure
cases). The selection of key LLBs is connected with the
controller template and reference parameter selection in the
Pivot Approach as well as the local task coordinate frame
selection for the task (see Sec. III. The probabilistic aspects
of the layer will be explained in Sec. V. Table II summarizes
what LLBs characterize the above-stated desired HLBs:

TABLE II
COMBINATION OF NECESSARY LLB’S TO ASCERTAIN THE PRESENCE OF

HLB’S.

HLB LLB Force Axis
FX Fx

Rotation FX Fz
FX My

Snap Insertion CT Fx,My
Align||Fx Fy-Mx,Mz

Mating FX Fx-Mz

F. Verification Layer

The fifth and last layer of the taxonomy assesses the
outcome of a task. Previously the assessment was made
purely by the presence of LLBs, in our current work it is
performed based on threshold values that were derived from
HLB beliefs. Sec. V-C will describe the process in detail.

TABLE I
MOTION COMPOSITIONS ACCORDING TO PRIMITIVE PAIRS.

Combination Category Label Combination Category Label Combination Category Label
Pos. Impulse Pimp Constant
Negative adjustment a Positive pos contact pc Positive increase i
Positive increase i Negative pos contact pc Negative decrease d
Constant increase i Constant pos contact pc Constant constant k
Pimp pos contact pc Pimp unstable u Pimp pos contact pc
Nimp neg contact nc Nimp contact c Nimp neg contact nc
Neg. Impulse Nimp
Positive adjustment a Positive neg contact nc
Negative decrease d Negative: neg contact nc
Constant decrease d Constant neg contact nc
Pimp pos contact pc Pimp contact c
Nimp neg contact nc Nimp unstable u
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V. BAYESIAN FILTERING

The RCBHT detected key LLB presence for all FT axes
to characterize a given desired HLB. However, a number of
factors render the assessment uncertain: (i) the assembly’s
sensory data is noisy, (ii) the RCBHT is limited to discrim-
inate with certainty what LLBs are occurring, and (iii) key
LLBs may only appear for a short amount of time during a
state of the automata (see Fig. 5). For this reason, Bayesian
filtering was used to deal with uncertainty at the RCBHT’s
third layer. BF’s have been typically used to localize mobile
robots and, more recently, features in manipulation tasks
[10], [4]. We have opted to implement a BF algorithm in
the context of the RCBHT to deal with the aforementioned
uncertainties while easing computational complexity and
express the task’s high-level state as a probabilistic result.
In our work, the Bayesian filter will model LLBs as the
task’s state. While LLBs are an indirect measurement of
the state the selection reduces computational complexity and
renders the BF as a viable approach. The latter will compute
the posterior distribution (or belief) of a state xt at time t,
conditioned on all past measurements z1:t and all past motion
commands u1:t. The state belief is computed for each of the
six LLBs presented in Sec. IV-C at every time step for each
FT axis.

In BFs, a Markovian assumption is used which states
that the knowledge about the current states and parameters
suffices to make predictions about future states and measure-
ments. The belief in a state xt at time t is represented as:
bel(xt) = p(xt|z1:t). BFs use an update rule to recursively
update the belief in the current state from the belief in the
previous step: b̄el(xt). The algorithm’s first iteration requires
an initial belief bel(x0) as a boundary condition. The update
step can be better understood when decomposed in two steps:
the prediction step and the correction step.

A. The Prediction Step

Predicts the state at time t by using a ‘system model’ in the
previous time step t− 1. The system model for our discrete
system is expressed as:

P (xt|z1:t−1, u1:t−1) =∑
xt−1

P (xt|xt−1, ut−1)P (xt−1|z1:t−1, u1:t−1) (1)

The system model is the sum of the products between
state transition probabilities and priors probabilities for the
previous state. While Bayesian filtering provides an optimal
solution to estimating uncertainty, it does not explain how a
probability model can be represented.

In terms of representations, LLB prior probabilities P (llb)
were defined as a function of their cumulative duration d with
respect to the duration T of a single automata state s in a
single FT axis a, such that at the completion of any automata
state: P (llbs,a) = ds,a/Ts,a.

With respect to the state transition model, a 6x6 matrix
of transition-counts between the six LLBs was computed for

each automata state for each FT axis yielding 18 matrices.
State transition probabilities were computed as a fraction
of counts per LLB with respect to the total number of
transition counts per automata state per FT axes. Seven
training assembly trials were used to compute average values
for: prior and state transition probabilities for each FT axis
and each automata state.

The selection of Cumulative Durations as the measured
feature in the pRCBHT reflects two aspects: (i) the longer
an LLB lasts during an automata state, the more likely it is
to dominate the behavior for that automata state, and (ii) due
to disturbances or limitations in the RCBHT an LLB in an
automata state may switch LLBs but return to the LLB of
interest at a later time.

B. The Correction Step

The Correction Step updates the posterior by updating
the prior belief (it corrects it) by incorporating the observed
measurement, zt, likelihood’s and motor command’s ut such
that:

P (xt|z1:t, u1:t−1) =

ηP (zt|xt)P (xt|z1:t−1, u1:t−1), (2)

where, η is a normalization factor that guarantees that the
probability sum does not exceed 1. Measurements represent
the cumulative duration feature explained for prior probabil-
ities. In the measurement’s case, zt measures the cumulative
duration upto that point in time for a given state s for a given
force axis a. The measurement likelihood was computed
using a Gaussian distribution where zt is the cumulative
duration and xt is the llb for which we are computing the
belief: P (zt|xt) = N (zt; x̂t, σ

2). The mean and the variance
where calculated for each LLB for each automata state for
each force axis by using seven trial assemblies.

In effect, when the cumulative duration of the selected
LLB approaches the mean cumulative duration (for any of
the existing six LLBs) computed from the training data, the
more likely it is to be the correct measurement. For example,
compare the Fy axis for Fig. 5 and Fig. 6. Notice, how
in the former the FX LLB’s duration in the Rotation state
occupies almost the entire state. Then in the latter figure, the
likelihood that FX is actually the measured LLB is 100%
for most of the Rotation state’s duration. The correction step
and prediction step can be re-written in terms of a selected
LLB llbi posterior (or belief) as:

P (llbi,t|zllb,1:t, u1:t−1) =

ηP (zllb,t|llbi,t)
∑
j,t−1

P (llbi,t|llbj,t−1, ut−1)

P (llbj,t−1|z1:t−1, u1:t−1)).

(3)

Fig. 6 shows the belief over all LLBs per FT axis per
automata state for a test assembly task. Note the correlation
between this belief plot and the sequence of LLBs in Fig. 5.
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C. Probabilistic HLB

As mentioned in Sec. IV-E, the HLB layer is a function of
key selected LLBs (refer to Table II). Recall that Bayesian
filtering was implemented to obtain a belief about the LLB
states for each FT axis across the three automata states. The
HLB layer then computes the joint probabilities of key LLBs
that occur in all or any of the six FT axes.

Fig. 7 shows the HLB belief per each automata state. Five
training trials were used to derive an average expectation of
HLBs per automata state (thicker plot lines in magenta, blue,
and black).

D. Probabilistic Snap Verification Layer

The Snap Verification layer (SVL) used a scheme in
which three thresholds were generated to determine whether
each automata state was successful. The thresholds work
in a cumulative way such that the last threshold effectively
determines whether the task was successful as a whole. The
scheme in the SVL layer is designed to provide an intuitive
assessment of the task’s outcome such that with the success
of each subsequent HLB, the likelihood of success of task
(and with it the thresholds) also grow (see to Fig. 7 for
reference).

The SVL thresholds were derived by using a weighted av-
erage function over training data HLB beliefs. The weighted
function divides each of the automata states HLB beliefs by
the total automata state number. The algorithm then adds the
maximum value of the previous HLB belief over a transition
window to the next HLB belief. A transitional window
is necessary given that during automata state transitions,
LLB beliefs change and decrease in likelihood. Taking the
maximum value over the transitional window ensures that the
drop in probability does not hurt the expected (next HLB’s)
likelihood (see dotted boxes in Fig. 7).

This algorithm shows increased likelihood success levels
with each succeeding HLB state; i.e. if there was 100%
probability that each automata state succeeded, the SVL layer
would show the likelihood of Rotation at 1/3, Snap at 2/3,
and Mat at 1. If, on the other hand, Rotation succeeds but the
others do not, the SVL layer would show an success belief
at 1/3.

Fig. 7 presents three pieces of data: (i) the HLB Beliefs
for five successful training examples, (ii) the averaged HLB
belief values, and (iii) the weighted averaged values from
which the SVL extracts threshold values at the automata
state’s end. Note that near transition areas between belief
states, belief state’s fluctuate drastically. Thus, a transition
window is considered, in which the average of all belief state
values is computed and used as the effective threshold. The
Rotation state success threshold is marked at about 27%, the
Snap’s threshold is marked at about 51%, and the Mating’s
threshold is marked at about 74%.

Fig. 7. The HLB and SVL layers: HLB belief per automata state is shown
by three non-red lines averaged over five trials. The magenta line shows the
Rotation belief, the blue line represents the Snap belief, and the black line
represents the Mating belief. The weighted belief function used to extract
success thresholds in the SVL layer is shown in red. The latter equals 1/3
of the value of the automata state averaged beliefs. The dotted green lines
represent transitional windows used to compute success thresholds for each
automata state.

VI. RESULTS

After the training phase, seven more test snap assembly
trials were executed in simulation using the HIRO robot and
the 4-snap camera mold. For each of the seven trials, the
SVL correctly assessed the outcome of all seven assembly
tasks as a function of the representative LLB belief. Out of
the seven assembly tasks five succeeded and two failed.

VII. DISCUSSION

The pRCBHT effectively computed the state belief for
LLBs and HLBs. The SVL derived-thresholds effectively
classified the outcomes of test assembly trials in our work.
In our previous work, the RCBHT declared a task successful
if the presence of key LLBs existed, even if that presence
was very small. By introducing Bayesian filtering, the system
computed likelihoods for belief states based on gaussian
measurement models and averaged prior and transition prob-
ability models over history making the system more robust
against the impact of noisy FT signals and the presence of
short-lived LLBs.

The probabilistic outcome also yields more intuitive and
granular state awareness than before. The LLB belief state
conveys which behavior dominates a task at a specific time
in a given automata state in a given axis. This level of
granularity in conjunction with the SVL scheme, can allow us
to classify defective assemblies contextualized by automata
state and force axis, and fix them by issuing corrective
commands as feedback to the controller. This will effectively
close the loop between state estimation and corrective motion
enabling snap sensing for parts of complex geometry.

The current work is significant as it establishes a frame-
work by which to perform state reasoning on difficult ma-
nipulation tasks like snap assemblies. Our research has built
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on the use of a motion-constraining strategy that yields:
(a) similar-patterned signals over trials to facilitate the in-
terpretation of FT data; and (b) intuitive automata states
and transitions that work for cantilever-snap geometries of
varying complexity. The control strategy works in concert
with the RCBHT snap verification system, which is an
alternative to the contact state graph approach for compliant
motions. The RCBHT seems to be effective in reducing the
problem’s dimensionality while simultaneously offering a
high-level of intuition about the task’s state. Furthermore, by
introducing a probabilistic nature to the system, uncertainties
are mitigated with Bayesian calculus which yields temporal
belief representations.

There are however, a number of limitations and challenges
in our system. The first is the possibility of generating false-
positives results. While the SVL layer correctly assessed of
the outcome of all seven test trials; the two trials assessed
as failures were in fact successful assemblies. The problem
is not due to probabilistic miscalculations but on the fact
that LLB compositions result from primitives and motion
compositions classification as part of the first two taxonomy
layers. On two occasions the RCBHT generated an ‘AL’ LLB
tag for a task segment where an ‘FX’ corresponded. This
limitation could be addressed by introducing probabilistic
reasoning into the first two layers of the system and also by
executing an optimization routine during training to minimize
poor classifications.

Another limitation lies in that the probability models
for priors, transition models and the measurement model’s
gaussian noise, depend on training data examples. In our
work we used seven separate data samples to train and to test
the system. The probability models (priors and transitions)
can be improved by increasing the population size. Adjusting
these values over time based on experience should improve
statistical accuracy.

A very significant challenge, and one that requires further
study, is how to work with transitions. With respect to the
controllers and the control policy, transitions are fired when
contact forces pass a threshold. Such methodology has the
complication that if a threshold is set too low, noise could
trigger the next state, if the threshold is too high, state
estimation suffers near transition ranges since the estimation
depends on behavior assumptions that begin to change at the
edge of the transition. Learning how to deal with transition
uncertainty will be an important aspect of snap sensing.

Another complication in this work is caused by the
OpenHRP simulation environment. The latter was designed
for walking humanoids [9]. The physics engine struggles
to identify contact on the magnitude scale of assembly
parts. On occasion, some penetration exists between parts
thus affecting the expected LLB performance in different
automata states.

As part of our future work, we will improve the proba-
bilistic model by using the latest results in an assembly to
update prior and transition probabilities in our model. We

also hope to characterize error states and contextualize them
by state. That is, we want to understand what errors are more
likely for each automata state, classify them, and generate
corrective motions that can render a defective assembly into
a successful one. With this goal in mind, we will implement
an online version of the system on the actual HIRO robot.

VIII. CONCLUSION

In this work a probabilistic snap state estimation system
was presented. The system extended our previous system
by embedding a bayesian filter in the taxonomy. The latter
worked in concert with the motion constraining Pivot Ap-
proach as part of our ongoing work to design a framework
for cantilever-snap assemblies of varying geometrical com-
plexity. Probabilistic reasoning rendered our system more
robust by computing outcome likelihoods instead of simply
looking for the presence of key LLBs to assess the outcome
of an assembly. Our system correctly evaluated the outcome
of all simulated test snap assembly trials using Kawada’s
HIRO robot and a four-snap cantilever camera mold part. Our
future work consists in the characterization of error states
and generate corrective motions to generate the equivalent
concept of active sensing to snap, what we call ‘snap
sensing’. We will also focus on implementing our system
in real-time.
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Fig. 5. The RCBHT’s first three layers are presented in this figure. The first (Primitives) layer consists of linear fits shown by red line segments. The
second (Motion Composition’s) layer are shown in black text. The third (Low-Level Behaviors) layer are shown in red text labels. The colored boxes
represent the Pivot Approach’s stages: Rotation, Snap, and Mating. The figure shows the robot’s state throughout the task.

Fig. 6. LLB belief’s are computed for each of the six behaviors in the LLB layer of the RCBHT. Each LLB’s belief was computed with a Bayesian that
used the behavior’s average cumulative duration. The belief represents the likelihood that a behavior dominates the task at any moment in time.
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