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Abstract— Failure detection plays an increasingly important
role in industrial processes and robots that serve in unstruc-
tured environments. This work studies failure detection on
cantilever snap assemblies, which are critical to industrial use
and growing in importance for personal use.

Our aim is to study whether an SVM can use a small set
of features abstracted as behavior representations from the
assembly force signature to accurately detect failure at different
stages of the task. In this work, a linear SVM was embedded
with abstracted behavioral features to classify failure detection
in cantilever snap assembly problems. The approach was useful
in detecting failure offline during early and late stages of the
task. For early stages, low-abstraction behaviors sets performed
better due to their granularity and local temporal nature. For
late stage analysis, high-abstraction behaviors performed better
due to their coarse and global representations.

I. INTRODUCTION

Failure detection and correction play an increasingly sig-

nificant practical role both in the industrial processes with

ever shortening life-cycles and with robots that serve in

unstructured and uncertain environments. This work focuses

on cantilever snap assemblies, which are often used in

manufacturing, and will grow in importance for personal and

service robots. In robotics, failure detection methods can be

divided into model or model-free approaches. The former

use theoretical system designs to identify failure, while

the latter accumulate experimental data for both outcomes.

Model-free approaches can be computationally expensive

and damaging to robot equipment given that these experiment

types need to be physically implemented Recent work has

focused on implementing supervised learning techniques that

require relatively few trials to learn failure detection [1].

Failure detection has traditionally focused on parts assembly

[2], tool breakage [3], [4], and threaded fastener assembly

[5]. Recent work has used support vector machines and

principal component analysis to classify successful or failed

assemblies upon completion. [1], [3]. A similar work tried

to continuously monitor a task and identify early failure by

combining relevance vector machines with a Markov chain

model [6]. No work has yet to focus on snap assemblies.

The latter are challenging due to their elastic nature and

complex geometrical configuration. Our work, focuses on

detecting failure in cantilever snap assemblies using support

vector machines (SVMs) to perform supervised learning and

classification. For cantilever snaps, there are three common

fastener types, out of which Cantilever snaps are the most

common [7]. Detecting failure and failure modes in snap

assemblies is complex due to intricate force signatures that

stem both from complex hardware configurations and se-

lected motion strategies to accomplish a task. The complexity

is such that assembly planning methods like contact-state

graphs [8] have yet to be used in this context.

Some recent work on assembly strategies has been im-

plemented for cantilever snap assemblies. In [9], a strategy

exploited parts’ hardware design and constrained the motion

while in [10] empirically devised instructions were created.

In regards to estimation, [9] a continuous non-parametric

system produced high-level abstractions and used rule-based

and Bayesian models to reason about the task. Likewise,

[11] used a sticky-Dirichlet Process Hidden Markov Model

to perform continuous estimation of human-labeled nominal

executions. With respect to failure and failure sub-mode

classification, [12] studied cases in which assemblies devi-

ated from a nominal trajectory in 1 of 3 directions. They

empirically correlated salient features with single deviation

directions and studied if they could classify failure modes

even when deviations were superimposed in 2 or 3 direc-

tions. They also computed correlation data to validate if the

classified deviation-directions actually took place.

Our aim is to study whether an SVM can use a small set

of features abstracted as behavior representations from the

assembly force signature to accurately detect failure in a can-

tilever snap assembly. We would also like to study whether

failure can be detected early in the assembly whenever the

initial contact of parts is inadequate. This question is of

importance for two reasons: (i) the behavioral representations

are part of a data-rich framework that can be used for a

variety of estimation settings, and (ii) the dimensionality of

the label set is much smaller than that of the six dimensional

force vector. For this work we consider an SVM that uses

features that represent abstracted (labelled) behaviors from

the assembly force signature. These abstracted behaviors are

produced by the Relative change-based Hierarchical Taxon-

omy (RCBHT) framework presented in [13]. The RCBHT

consists of four increasingly abstract layers plus a monitor

(the SVM in this work) and is based on the premise that

patterns of relative-change, aided by contextual information,

can be encoded through a small label set and abstracted to a

human intuitive level (see Fig. 3). Each layer in the RCBHT

consists of a fixed set of labels. The higher the abstraction
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level, the smaller the label set. Furthermore, contextual

information refers to what: task state, force axis, abstraction

level, and behavior sequence pertain to an encoded behavior.

The framework is designed to generalize to cantilever parts of

varying complexity through an optimization routine defined

in [14]. The RCBHT also works in concert with an assem-

bly strategy that generalizes to cantilever snaps of varying

geometrical complexity, as in [15]. The strategy exploits

hardware design to constraint the motion and subdivide an

assembly into four states: Approach, Rotation, Insertion,

and Mating. The Support Vector classifier is tested against

three different sets of feature labels from the RCBHT. These

label sets come from the first three layers of the taxonomy

and are tested separately to analyze the accuracy of the

classifier in detecting failure. Furthermore, we are interested

in examining which label sets are better to detect failure early

in the task (we only look at the Approach stage) or the entire

task (only consider the Approach state).

II. EXPERIMENTAL SETUP

NX-HIRO, a 6 DoF dual-arm anthropomorph robot was

simulated in the OpenHRP 3.0 environment [16]. Male and

female 4-snap cantilever camera parts were used. The male

part was mounted on the robot’s wrist, while the female snap

was rigidly fixed to the ground as in Fig. 1. In this work

a generalizable cantilever snap assembly strategy named

the Pivot Approach (PA) strategy was used. The strategy

exploits snap parts’ hardware design to constraint the task’s

motion about a docking pivot (see Fig. 1) and generate both

similar motions and similar sensory-signal patterns across

assembly tasks. The strategy systematically discretizes the

assembly into four intuitive states: the Approach, Rotation,

Insertion, and Mating states shown in Fig. 2. For this paper,

it suffices to know that the Approach state drives the male

part to contact the docking pivot on the anterior side of the

female snap at an angle. The Rotation state, rotates the male

part about the world’s y-axis until contact is made by the

posterior snaps. The Insertion state drives the male part into

the female part while further aligning the parts until the parts

Docking Pivot

Female Part

Male Part

(4 parts)

Failure Trajectory

Directions

Fig. 1. The HIRO-NX robot performing a cantilever snap assembly.

snap. Finally, the Mating state maintains both parts stably

connected.

As for failure generation, we have enacted a strategy that

inserts noise deviations in linear and angular directions. For

linear translations we selected the +x and ±y axes with re-

spect to the world frame. For rotations we selected the z-axis

(±φ). We highlight the deviation direction for two reasons:

(i) the FT signals have very different signatures given the

asymmetrical part’s geometry, and (ii) we are interested in

detecting the types of failure (failures sub-modes) that occur

in future works. The deviations were constrained within the

following bounds: 0.0075m ≤ x ≤ 0.0105m; ±0.0075m ≤
y ≤ ±0.0105m; and ±0.1745rads ≤ θ ≤ ±0.5066rads.

III. THE RELATIVE CHANGE-BASED HIERARCHICAL

TAXONOMY

The RCBHT yields state representations by hierarchically

abstracting snap assembly force-torque (FT) data in increas-

ingly intuitive ways. The hierarchical taxonomy is composed

of four increasingly abstract layers that encode relative-

change in the task’s force signatures and one task monitor.

The system’s taxonomy (see Fig. 3) is built on the premise

that relative-change patterns can be classified through a small

set of categoric labels and aided by contextual information.

The RCBHT analyzes FT signatures from all force axes

independently and yields encoded behavior according to a

set of contextual rules that consider the task state, FT axis,

taxonomy layer, and behavior sequence of a task.

A. Primitive Layer

The first layer, the Primitives, partitions FT data into

linear data segments and classifies them according to gradient

magnitude. Linear regression along with a correlation mea-

sure are used to segment data when a minimum correlation

threshold is flagged. Gradient classification has three main

subgroups: positive, negative, and constant gradients. Both

the positive and negative sets are subdivided into 4 ranges:

small, medium, large, and very large. Contact phenomena

is characterized by abrupt changes in force signals almost

approximating an (positive or negative) impulse, it is such

HL Behaviors

Task Monitor

LL Behaviors

Motion Comps

Primitives

ALIGN ALIGN

ROTATION

Success/Failure

mpos bneg

bneg
const

const

pimp

bpos

mneg

Adjust Increase Adjust

constconst

AdjusDecrease

Fig. 3. The RCBHT taxonomy consists of four layers and a monitor. Each
succeeding layer encodes behavior at increasing levels of abstractions. Each
layer has a particular set of labeled behaviors that can be use by the monitor
to estimate the state of the assembly.
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Fig. 2. Top: A successful assembly strategy consists of four states: Approach, Rotation, Snap, and Mating. Bottom: Failed assemblies consisted of
modifying the trajectory of the male part about the x and y axis, and rotated about x (yaw) as well. Here you can see representative deviations in the x,
y, x-y, and y-yaw directions.

impulses that are characteristic of snap motions. Negative

and positive gradient ranges are labelled as:“sneg, mneg,

bneg, nimp” and “spos, mpos, bpos, and pimp” respectively.

Constant gradients are those whose change is trivial. They

are classified as such if their gradient magnitude is lower than

the absolute value of a calibrated threshold and are labeled

as “const”. In order to generalize the parameter thresholds

for this layer, an optimization routine devised in [14] uses

contextual information derived from the assembly strategy to

determine where the largest gradients and the near-constant

gradients are located according to task state and axis. For

details see [14]. Filtering is executed for this and every layer

of the taxonomy. Filtering merges extracted behaviors based

on three different criteria: (i) a time-duration context, (ii)

repeated behaviors, and an (iii) amplitude value context. The

time-duration context seeks to eliminate behaviors whose du-

ration is so small that they become negligible. The repeated

behavior principles merge repeated behaviors and clean noisy

signals. The amplitude criteria examines adjacent signals

magnitudes. If one is much larger than the other (except for

impulse signals), the lower amplitude signal is merged with

the larger one. Each layer runs a filtering cycle 2-3 times

to reduce the label number to a most representative number.

There are other details concerning filtering which are not

necessary for this discussion but can be found in [17].

B. Motion Composition Layer

The next layer analyzes ordered-pair Primitives sequences

to create “Motion Compositions” (MC’s). By studying pat-

terns in the ordered-pairs, seven sets of higher-level ab-

stractions are extracted. These actions represent force-torque

behaviors labeled as: adjustments, ‘a’, contacts ‘c’, increases,

‘i’, decreases, ‘d’, constants, ‘k’, and unstable motions, ‘u’.

Adjustments are motions where a positive/negative gradient

is followed by a negative/positive gradient respectively. They

represent a small rattle motion between male and female

snap parts. Additionally, if two positive or negative gradients

succeed each other, it points to actions in which the force

or torque is increasing or decreasing respectively. With

respect to our previous statements, we treat impulse gradients

(pimp, or nimp) independently. We acknowledge that when a

positive impulse is followed by a negative one or vice-versa

a contact action between male and female parts is likely.

Additionally, if two positive or negative impulses succeed

each other, it may lead to unstable behavior.

Besides the assigned label, each MC possess quantitative

data, including: average magnitude values, maximum signal

values, average amplitude values, and starting and ending

times for each of the primitives1.

C. Low-Level Behaviors

The taxonomy’s third layer considers MC ordered pairs

and uses the same contextual information (signal du-

ration and amplitude values) to yield another set of

higher-abstraction classifications called low-level behaviors

(LLB’s). Behaviors at this level become more intuitive. The

process of continuing to abstract in the same way, reveal

high-level details that are not apparent at more granular levels

of the taxonomy. Seven LLBs were identified and labeled as:

push, ‘PS’, pull, ‘PL’, contact, ‘CT’, fixed, ‘FX’, alignment,

‘ALIGN’, shift, ‘SH’, noise, ‘N’. The LLB formulation

criteria is similar to those at the MC level.

D. High-Level Behaviors

The fourth layer, the high-level behaviors (HLB’s) layer is

different than the previous three. This layer connects a top-

down approach with the bottom-up approach we have been

describing and makes temporal inferences about “what key

LLB’s should appear in a: (i) given coordinate axis, and (ii)

task states”; for the Pivot Approach’s individual task states to

be identified. For this work, the HLB layer is not used with

the SVM classifier to detect failure. To test the accuracy

of the classifier, we utilize behavior labels from the first

three layers of the taxonomy as feature inputs to the SVM.

A visual representation of the RCBHT is show in Fig. 3.

1From this work onwards, the RMS value field in the RCBHT has been
updated to represent a maximum signal value
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Fig. 4. RCBHT example in My axis for a successful case (left) and failure case (right) with deviation in the x-direction. The RCBHT shows primitives
with red lines, MC’s with black labels, LLB’s with red labels. The orange, yellow, green, and blue boxes represents the Pivot Approach’s states. On left
sub-figure, ata the top right corner, labels have been zoomed in for clarity.

Additionally, in Fig. 4 the sub-figure on the left shows an

example of RCBHT labelling in the My axis for a successful

assembly, and the sub-figure on the right shows a labelling

example for a failure case with deviation in the x-direction.

IV. SVM

In this work a linear Support Vector Machine was used as

a binary classifier between successful and failed cantilever

snap assembly tasks. In our work the classifier used an indi-

rect measure of force signatures; namely, RCBHT encoded

behaviors. The problem is interesting as the feature size is

significantly decreased, a one dimensional vector by the size

of the RCBHT label set for six axes. A typical feature vector

based on a force signature may be: the six-force dimensions

by 2000 sample points for a 10 second assembly sampled

at 200Hz. Furthermore, if the classification works, it ratifies

the effectiveness of the encoding in the RCBHT.

In particular, we wish to analyze the accuracy of the

classifier by using three different input features vectors. Each

vector corresponds to the encoded behaviors from each of the

first three RCBHT layers (and for each of the six FT axes).

The first layer is the Primitives layer. The latter yields the

most granular behavior at the expense of higher noise levels.

It is useful to understand local and short-duration events.

This layer has a 9 label set (see Section III-A, however,

the total label count during one assembly trial will be much

greater than any of the other RCBHT Layers. Next is the MC

layer which gives a higher level of abstraction and consists

of a 7 label set. The latter’s granularity level is between that

of the P and the LLB layer–appropriate for medium trends.

Finally, the LLB layer offers the highest abstraction level

and captures more appreciable behaviors in the task. The

LLB also consists of a 7 label set.

To ensure that our input feature vector maintains the same

size across different assembly trials, we construct the input

feature vector as a one dimensional vector that consists of a

given number of labels li, across six force-torque axes Fj ,

for a total of 1xR(li∗Fj). Each entry of the input feature

vector counts the total number of corresponding labels that

appeared in the assembly task for the appropriate force axis.

The dimension for our feature vectors would be as follows:

P-layer, 1xR54; MC- and LLB-layers, 1xR42. While our

current labeling scheme does not consider time, the presence

of specific labels in a given axes has a characterizing ability.

We will later analyze which of the three layers is more useful

for classification.

Linear Support Vector Machines approximate a boundary

to separate binary classes through a hyperplane for large

feature spaces. Our feature vector x is of dimension R
(li∗Fj)

and it is used to learn a hyperplane: ωTx− b = 0, where ω
are the weights and b is the bias from the zero point. In effect,

the separation of each training point from the hyperplane is

the functional margin γ̂(i) and can be modeled as:

γ̂(i) = y(i)(ω(i)x+ b) (1)

Here the pair {y(i), x(i)} represent task outcome (success

or failure) as y(i) ∈ {1,−1} and x(i) is the input vector

for training and testing. The SVM optimizes the functional

margin by maximizing the distance to both successful and

failure cases by solving the quadratic programming problem:

max γ

s.t. γ = min
i=1,...,m

γ̂ , (2)

where, γ is the geometrical margin of the input points from

the hyperplane. The larger the geometrical margin the more

accurate the classifier. Our linear classifier was implemented

using the open-source “libsvm” algorithm along with a

Gaussian kernel [18].

It is worth noting here that the SVM classifier constructed

here is limited in its adaptability by its training conditions.

This classifier will work for cantilever snap assemblies of 4

snap parts, but would need to be retrained if the snap number

changed or the strategy changed. Nonetheless, the training

procedure is simple and can be re-trained for different

conditions.

V. EXPERIMENTS

As part of our experimental setup, the SVM classifier was

trained and tested using a Gaussian kernel. A total of 192

assemblies were executed. Of these, 150 were failure cases

and 42 were success cases. Note that as part of the failure

cases, we have failed assemblies with trajectory deviations

in the x−, ±y−, ±φ− directions, as well as combinations of

all of these. Half of the failure and success cases were used
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for training, while the other half were used for testing. With

regards to input feature vectors, three separate vectors were

constructed. Each feature vector was implemented by using

one label set for each of the first three layers described in Sec.

IV. Note that as part of our classification problem, we wish

to identify the classification accuracy as part of two different

scenarios: (i) early failure detection, consists of labels just in

the Approach state; and (ii) late failure detection, consisting

of labels in all four states of the Assembly task (Approach-

Mating).

A. Training and Testing Methodology

In analyzing the accuracy of the classifier, we must note

that there is a tradeoff between the size of the input feature

vector and the accuracy of the latter. To this end, during

training we varied the number of training samples from

5 to 96 samples. We started with 5 so as to include 1

success case for every 4 cases (this is the approximate ratio

between our 150 failure cases and our 42 failure cases).

When incrementing the number of samples for training, we

do not randomize. We append new trials to the ones already

selected. This was done in consideration of the significant

variability in failure deviations as part of our failure assembly

task set. If we randomize training samples while only training

with a small number of trials, testing will show (great)

variability as a function of what training cases were selected.

For testing, all 96 (75 failure and 21 success) cases are used

to measure accuracy. Furthermore, we repeat a test 10 times

(a total of 960 trials) and compute the average accuracy

across the 10 tests.

B. Early Failure Detection

For early failure detection we construct our input feature

vector consisting of those labels that show only during the

Approach state for all six FT axes. Training and testing is

conducted as per Section V-A. Interestingly enough, when

just considering the Approach state, the classifier trained

with MC labels and LLB labels cannot detect any success

cases, rendering the classifier inconsequential here. However,

when the classifier is trained with the P labels, the results are

satisfactory as seen in Fig. 5. For the P-trained classifier, the

classifier reached an average asymptotic maximum accuracy

value of 93.72% and a minimum of 89.6%. It took about 60

trials to reach the asymptotic value.

C. Late Failure Detection

For late failure detection we construct our input feature

vector consisting of those labels that show throughout all

4 states of the task (Approach-Mating) for all six FT axes.

Training and testing is conducted as per Section V-A. In this

case, the classifier trained with P labels could not identify

any success cases. On the other hand, MC and LLB trained

classifiers performed well as shown in Fig. 6 and Fig. 7.

For The LLB and MC layers, the classifier had an average

asymptotic maximum accuracy value of 99.59% and 99.25%
respectively and a minimum of 98.9% and 93.8%. The MC

0.75

0.8

0.85

0.9

0.95

0 20 40 60 80 100

A
c
c
u

ra
c
y

Num. of Trials used for Training

P Classifier Accuracy in Early Failure Detection

Avg. Val.

Min. Val.

Fig. 5. Early detection failure accuracy for classifier trained with Primitive
layer labels.
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Fig. 6. Early detection failure accuracy for classifier trained with Primitive
layer labels.

classifier reached asymptotic value after about 70 trials while

the LLB classifier did so after approximately 22 trials.

Both the LLB and MC classifiers can separate classes with

very high accuracy. This result indicates that there must be

inherent difference between success and failure classes in

the atemporal feature vector. We also noted that when only

early failure detection is tested, the MC and LLB classifiers

have too few data to identify failure. In some cases, in some

force axes, there is only one LLB in the Approach state (and

whose duration lasted the entire state). On the other hand,

for the P classier and late failure detection, P labels contain

too much noise at a very granular level. When considering

only the Approach state, the noise accumulation is not that

significant, however, after an entire assembly task has been

conducted, the noise disturbance is too significant for proper

classification to take place.
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Fig. 7. Early detection failure accuracy for classifier trained with Primitive
layer labels.

VI. DISCUSSION

The SVM successfully used a small feature set of behavior

representations from the RCBHT. We noted that early failure

detection is possible with low abstraction levels but not

otherwise. Similarly, late failure detection was possible with

higher-level of abstraction labels. In fact, the LLB label set

performed extremely well. Reaching an accuracy level of

99.59% in just over 22 trials. This is comparable to what

others have done as in [1]. However, being able to classify

using indirect behavior feature sets is an interesting approach.

Such labels and their quantitative data play an important role

in estimation to help the robot perform active sensing and

later error correction.

For our future work, we would like to extend our classifi-

cation to sub-failure modes and do so in real-time. We also

will seek to implement solutions that can generalize more

flexibly to other types of problems.

VII. CONCLUSION

In this work a linear SVM was embedded with abstract

behavioral features was used to classify failure detection

in cantilever snap assembly problems. The approach was

useful in detecting failure both during early and late stages

of the task. For early stages, low-abstraction behaviors sets

performed better due to their granularity and local temporal

nature. For late stage analysis, high-abstraction behaviors

performed better as they capture representative and global

behaviors better. This work contribution consists in creating a

robust input feature vector using a very small set of encoded

behavior features, which in turn play an important role in

state estimation tasks and error correction mechanisms.
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