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Average HLB Belief (Joint Prob Key LLBs) across Trials as a Function of State Automata for Outcome Verification

Two plots below: 1) Shows continous LLB beliefs for all
states and FT axes. See legend for classification. 2) Shows 
an Outcome Assessment Verification Scheme. HLBs were 
computed as the joint probabilities of key LLB beliefs. 
The scheme predicts wether each state is successful or not.
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The PA exploits snap parts’ hardware design to constrain 
the task’s motion and generate similar sensory-signal patte-
rns across trials & systematically discretize the assembly 
into intuitive states.  

The RCHBT yields state representations by hierarchically
abstracting FT relative-change to generate intuitive HLBs.
Patterns are classified through a small set of categoric lab-
els in contextually sensitive ways across each automata st-
ate in the Pivot Approach for all 6 FT axes. 

Bayesian filtering (BF) was embedded from the 3rd layer
-up yielding belief states for each LLB. The HLB layer 
computed joint probabilities of key LLBs to yield an 
outcome assessment scheme for the task. 

Including bayesian filtering in the RCBHT deals with
uncertainty and renders more intuitive and granular un-
derstanding of the robot’s state. The pRCBHT computes
a belief state for each LLB for each automata state for 
each FT axis. 

The current belief state is updated recursively from the
previous state by means of a Prediction Step and a Co-
rrection Step. The latter predicts the state by using a sy-
stem model from the previous time-step. The former up-
dates the prediction by incorporating an observed meas-
urement. In our work, we observed the cumulative dura-
tion of individual llb’s and computed a probability using 
a Gaussian distribution such that: 

A prob snap state estimation system was presented as part
of the development of a Snap Sensing framework. The 
pRCBHT rendered a more robust system by providing be-
lief states and correct evaluation of all test assemblies.

Snap Assemblies are challenging due to varied geometrical
configurations of elastic components. Cantilever snap types 
have 1, 2, 4, or more snaps. Our goal is to develop a Snap 
Sensing framework that perform state estimation and error
-corrective motions.

A control strategy, a hierarchical taxonomy, and Bayesian 
filtering were integrated to produce robust and intuitive 
robot state representations needed for corrective motions. 
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